CDA数据挖掘工程师脱产*班:CDA数据挖掘工程师*班专门为希望转岗到数据挖掘相关岗位学员开设,相关岗位*括数据挖掘工程师、机器学习工程师、算法工程师、商业策略数据分析师等。
课程设计循序渐进,从基础工具与理论知识入门,进阶到统计分析方法和机器学习模型、文本挖掘模型。
其中*括:Python编程基础、数据清洗、统计分析、数据处理与特征工程、Python机器学习、自然语言处理等课模块。
课程理论知识涵盖CDA LEVEL II和CDA LEVEL III等级考试的所有考点。
熟练掌握数据挖掘全流程的Python实操,*括数据清洗算法、特征工程、数据建模、数据可视化等
熟练掌握Python数据挖掘算法与实践,*括统计分析、统计模型、机器学习算法、深度学习算法、文本挖掘算法
灵活使用数据挖掘算法解决各行业的业务问题,通过策略优化和精准预测来解决运营、产品、营销方面的问题
有一定数学或统计、计算机基础与数据分析业务经验,希望脱产学习后转岗到数据挖掘岗者
希望提升数据挖掘技术的在职提升者
从事算法科学、深度学习等*的科研人员、分析师与工程师等
产品、运营、营销、管理、咨询相关岗位从业者,希望增加数据分析技能与思维
参加CDA等级认证考试LEVELII和LEVELⅢ考生
1章工具先导课
1-1Python基础和数据清洗
2章数字化*保障机制-数据治理
2-1数据治理驱动因素
2-2数据治理域
2-3数据管理域
2-4数据应用域
2-5如何开展数据治理
3章数字化*方法
3-1EDIT数字化模型简介
3-2业务探查(E)
3-3问题诊断(D)
3-4业务策略优化和指导(I)
3-5算法工具介绍(T)
4章数据采集方法
4-1数据采集方法
4-2数据模型管理
5章Python编程基础
5-1Python标准数据类型
5-2控制流语句
5-3自定义函数
5-4异常和错误
5-5类与面向对象编程
5-6Python连接数据库操作
5-7Python编程基础习题串讲与直播答疑
6章Python数据探索、数据处理与可视化
6-1Numpy数组基础操作
6-2Pandas数据表的基本操作
6-3Pandas数据探索
6-4Pandas数据可视化
6-5Python数据可视化*-Matplotlib介绍
6-6Python数据可视化*-Seaborn介绍与图形绘制
7章Python探索分析综合案例
7-1实战项目1:斯德哥尔摩气候可视化分析
7-2实战项目2:餐饮订单数据清洗与分析
7-3实战项目3:文本数据分析之QQ聊天记录可视化分析
8章Pythont统计分析与运筹学基础
8-1先导课:微积分与线性代数
8-2抽样方法
8-3统计量及抽样分布
8-4参数估计与假设检验
8-5统计分析与Python实战
8-6线性规划与二次优化
8-7实战项目1:关于饮料消费的统计分析
8-8实战项目2:快递公司的路线策略优化
9章数据分析模型、算法与商业应用
9-1数据分析方法论介绍
9-2方差分析
9-3回归分析
9-4分类数据分析
9-5逻辑回归
9-6实战项目1:金融客户行为特征分解与营销策略优化
9-7实战项目2:汽车行业销售预测与经营战略优化
9-8实战项目3:基于广义线性模型的汽车保险分类定价策略的优化
9-9数据降维
9-10时间序列分析
9-11实战项目1:收益率的系列预测
9-12实战项目2:基于时间序列的机场客流预测与运营策略优化
10章标签体系与应用
10-1用户标签体系设计原理
10-2用户标签的制作方法
10-3标签体系的用户画像应用
10-4实战项目1:用户行为在营销活动的价值分析
10-5实战项目2:自动预警指标推送功能框架的搭建
10-6实战项目3:app静默用户触动分析
11章数据挖掘概论
11-1数据挖掘概要
11-2数据挖掘方法论
11-3基础数据挖掘技术
11-4进阶数据挖掘技术
12章高级数据处理与特征工程
12-1高级数据预处理
12-2特征工程概要
12-3特征建构
12-4特征选择
12-5特征转换
12-6特征学习
13章机器学习算法与应用(一)
13-1KNN-最近邻分类算法:原理、实现
13-2决策树(分类树及回归树)
13-3聚类分析
13-4实战项目1:基于决策树的保险精准营销行业案例
14章机器学习算法与应用(二)
14-1朴素贝叶斯
14-2神经网络与深度学习
14-3支持向量机
14-4集成方法
14-5实战项目1:航空客户价值分析综合案例
14-6实战项目2:基于集成算法的乳腺癌疾病预测
14-7实战项目3:基于神经网络的汽车燃油滤预测
15章机器学习算法与应用(三)
15-1关联规则
15-2序列模式
15-3模型评估
15-4实战项目:推荐系统实战
16章机器学习实战
16-1自动机器学习
16-2类别不平衡问题
16-3半监督学习
16-4模型优化
16-5实战项目1:以自动机器学习技术开发银行业信用风险评分模型并进行*模型调参
16-6实战项目2:以类别不平衡处理技术开发银行业中小企业信贷营销模型并进行*模型调参
16-7实战项目3:以半监督式学习技术开发电信业客户流失模型并进行*模型调参
17章自然语言处理与文本分析理论与项目实操
17-1自然语言处理概要
17-2分词与词性标注
17-3文本挖掘概要
17-4关键词提取
17-5实战项目1:文本挖掘实战—电商标题关键词分析
17-6实战项目2:在线中文命名实体识别实战
17-7实战项目3:在线中文关系抽取实战
18章行业综合项目实战
18-1实战项目1:金融信用评分卡风控建模综合项目实战
18-2实战项目2:以特征工程技术开发文本情感分析模型
18-3实战项目3:以深度学习技术开发银行业信用卡盗刷侦测模型
18-4实战项目4:以图像处理技术、深度学习及迁移学习技术,开发人脸口罩侦测模型
19章数据分析师职业规划课
19-1职业规划
19-2职场沟通
19-3团队协作力培养
20章面试技巧一对一辅导
20-11V1面试技巧指导
20-2简历修改
21章选修课
21-1何为数据产品经理?
21-2Python爬虫
21-3Python办公自动化
21-4数据挖掘项目选修项目