以二次型为例,定义比较长,且字母较多。如果我们用“二次齐次多项式”作为关键词,那掌握起来就方便多了。
高数极值和拐点的概念可以概括为:极值即局部的最值拐点即凹凸性的分界点。
线性代数向量部分的几个定理可以概括为:整体无关推部分无关向量组无关推延伸组无关一个线性无关的向量组不能由个数比它少的向量组线性表出。
以高数*章为例,*章内容为函数、极限与连续,函数包括定义、运算、性质和分类极限包括定义、性质和计算连续包括连续、间断点和闭区间上连续函数的性质。每一部分内容还可以展开。
不能说看题没有收获,见多识广后总对思路有些启发。但相对于做题来说,看题的效果要小很多。
从主动性上看,看还是一个被动接受的过程,自己的思路被写解析的人的思路牵引而做题则是主动思考的过程。
从经验上看,相信考生都有这样的经验:一道题不会做,看解析会了,合上书,自己做还是感觉磕磕绊绊。
效果差意味着没有把握到这道题的关键,没有掌握好解法,也就谈不上把书变薄了。
精神可嘉,但并不可行:有一些考点偏理论,且相对独立(如大数定律和中心极限定理),想在基础阶段理解得很透彻有一定难度,与其花大量时间与其较劲。
不如把精力用在其它重要考点上,把这部分内容往后放,甚至到强化阶段再看也不迟有一些偏概念、偏证明的题,思考再三也搞不定,不妨先标出来,暂且搁置,把主要精力用在偏计算的题目上,之后再杀个回马枪!
面面俱到容易陷入到细节而不能自拔,舍掉细枝末节方能得到关键环节。