马鞍山跨考考研学员问答(10)

还有的考生认为现在离考试还远,没有紧迫感。今天没事干就看看书做两个题,明天有些事情就把书放在一边不理会了。这样的结果是看了后面忘了前面,知识没有连续性,形不成体系。考研的路程是漫长的,数学的学习是枯燥的,在复习过程中需要考生具有坚强的毅力。虽然2013的数学考试大纲未颁布,但万变不离其宗,考研数学的基本内容一般变化不大,考生可以参照去年的大纲和试题进行复习。详细了解本专业应考的数学卷种的基本要求,考试的题型、类别和难易度,以便更好的展开复习。凡是在大纲中表述为“会”、“理解”、“掌握”等的考试内容往往都是

考研数学记忆与理解很重要,*举一反三,考研数学一般考察考生的基础知识的掌握和运用解题的能力。数学的复习需要一步一步的积累知识、循序渐进的学习方法。数学的考题总是有严密的科学性,精确的答案,因而在打牢基础的前提下,万变不离其宗的灵活运用概念,一切难题都会迎刃而解。

多次基本训练,抓住考研重点通过对历年试题的统计分析可以得出常考的内容,考试的重点,通过对近几年考题的分析可得出考试热点,抓住重点、热点可使复习针对性增强,加快复习进度并节省大量时间,提高考研竞争优势,为考场取得高分打下坚实的基础。考研就是考“熟练”,只有把内容、方法搞熟练,才能获得最后的成功。学数学只有做大量的高质量的练习题才能把基本功练熟、练透,才能提高应试和解题的能力,总之数学需多做题,不能眼高手低。做题时要完整、认真演算,过一段时间要翻出来再看几遍。

同学,由于考试时间的限制,“卡壳处”来不及攻克了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,*问想不出来,可把*问作“已知”,“先做第二问”,这也是跳步解答。

同学,以退求进是一种重要的解题策略,也是做题的最高境界。如果你不能解决所提出的问题,那么可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。这个技巧需要同学们做题做到一定境界来体会,如果可以做到这一步,那么什么难题都不是难题了。

对于同一道题目,有的人理解得深,有的人理解得浅,有的人解答得多,有的人解答得少。为了区分这种情况,阅卷评分办法是懂多少知识就给多少分。也叫踩点给分,即踩上知识点就得分,踩得多就多得分。因此,对于难度较大的题目可以采用这一策略,其基本精神就是会做的题目力求不失分,部分理解的题目力争多得分。因此,会做的题目要特别注意表达准确、逻辑清晰、书写规范、语言严谨,防止被“分段扣点分”。

同学,在解题过程中卡在某一步是很常见,这时可以换一种思路,也许就会柳暗花明又一村。同学们可以把卡壳处空下来,先承认中间结论,再往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

同学,是这样的,有的大题难度比较大,确实啃不动。一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步。尚未成功不等于失败,特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分。最后结论虽然未得出,但分数却已过半。

以退求进是一种重要的解题策略,也是做题的最高境界。如果你不能解决所提出的问题,那么可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。这个技巧需要同学们做题做到一定境界来体会,如果可以做到这一步,那么什么难题都不是难题了。

由于考试时间的限制,“卡壳处”来不及攻克了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,*问想不出来,可把*问作“已知”,“先做第二问”,这也是跳步解答。

马鞍山跨考考研

马鞍山跨考考研

跨考教育马鞍山校区

查看全部校区 进入官方主页